Simultaneous Change Point Detection and Identification for High Dimensional Linear Models

主讲人

Bing Liu

简介

<p><span style="font-size: medium;"><span style="font-family: Arial;"><span class="fontstyle0">In this article, we consider simultaneous change point detection and identification in the context of high dimensional linear models. For change point detection, given any subgroup of variables, we propose a new method for testing the homogeneity of corresponding regression coefficients across the observations. The test statistic is based on a weighted </span><span class="fontstyle2">L</span><span class="fontstyle3">1&nbsp;</span><span class="fontstyle0">aggregation, both temporally and spatially, of a de-biased lasso process. A multiplier bootstrap procedure is introduced to approximate its limiting distribution. For change point identification, at each fixed time point, we first aggregate spatial information of the debiased lasso process with </span><span class="fontstyle2">L</span><span class="fontstyle3">1</span><span class="fontstyle0">-norm, then a change point estimator is obtained by taking &ldquo;argmax&rdquo; with respect to time of the above aggregated process. Under </span><span class="fontstyle4">H</span><span class="fontstyle5">1</span><span class="fontstyle0">, the change point estimator is shown to be consistent for the true change point location. Moreover, to further improve the estimation accuracy of change point estimators and reduce the computational burden of the testing procedure, a two-step refitting algorithm and a screeningbased method are proposed. Extensive simulation studies justify the validity of our new<br /> method and a real data application further demonstrates its competitive performance. This is a joint work with Professor Xinsheng Zhang (Fudan University) and Yufeng Liu (UNC)<br /> </span><span class="fontstyle6">Keyword: </span><span class="fontstyle0">Change point inference; High dimensions; Linear regression; Multiplier bootstrap; Sparsity; Subgroups.</span>&nbsp;&nbsp;</span></span></p>

时间

2020-04-10(Friday)10:00-11:00

地点

Zoom APP (https://zoom.com.cn/j/289021626, ID:289 021 626)

讲座语言

English

主办单位

统计系

承办单位

统计系

类型

独立讲座

联系人信息

主持人

Ming Lin

专题网站

专题

主讲人简介

<p>&nbsp;<span class="fontstyle0">Liu Bin, Postdoctor,</span> &nbsp;The Chinese University of HongKong</p> <p>&nbsp;</p> <p><span class="fontstyle0">Education Background<br /> </span><span class="fontstyle2">? </span><span class="fontstyle3">2009.09--2013.06 Bachelor&rsquo;s degree, Shandong University, Statistics<br /> </span><span class="fontstyle2">? </span><span class="fontstyle3">2013.09--2019.06 PhD, School of Management, Fudan University, Probability and<br /> </span></p> <p><span class="fontstyle3">Mathematical Statistics<br /> </span><span class="fontstyle2">? </span><span class="fontstyle3">2019.07--2020.07 Postdoctor, Department of Statistics, The Chinese University of HongKong<br /> </span><span class="fontstyle0">Overseas exchange experience<br /> </span><span class="fontstyle3">2017.09--2018.09, Department of Statistics, the University of North Carolina at Chapel Hill<br /> </span></p> <p><span class="fontstyle0">Research Interests<br /> </span><span class="fontstyle3">High dimensional inference, Change point analysis, Data-adaptive test, Gaussian<br /> graphical models, U statistics, Gaussian approximations and Bootstrap</span>&nbsp;&nbsp;</p>

期数

主讲人: Bing Liu
主讲人简介:

 Liu Bin, Postdoctor,  The Chinese University of HongKong

 

Education Background
? 2009.09--2013.06 Bachelor’s degree, Shandong University, Statistics
? 2013.09--2019.06 PhD, School of Management, Fudan University, Probability and

Mathematical Statistics
? 2019.07--2020.07 Postdoctor, Department of Statistics, The Chinese University of HongKong
Overseas exchange experience
2017.09--2018.09, Department of Statistics, the University of North Carolina at Chapel Hill

Research Interests
High dimensional inference, Change point analysis, Data-adaptive test, Gaussian
graphical models, U statistics, Gaussian approximations and Bootstrap
  

主持人: Ming Lin
简介:
独立讲座
时间: 2020-04-10(Friday)10:00-11:00
地点: Zoom APP (https://zoom.com.cn/j/289021626, ID:289 021 626)
主办单位: 统计系
承办单位: 统计系
类型: 独立讲座