Geometrically stopped Markovian random growth processes and Pareto tails

主讲人

Brendan K. Beare

简介

<p>Many empirical studies document power law behavior in size distributions of economic interest such as cities, firms, income, and wealth. One mechanism for generating such behavior combines independent and identically distributed Gaussian additive shocks to log-size with a geometric age distribution. We generalize this mechanism by allowing the shocks to be non-Gaussian (but light-tailed) and dependent upon a Markov state variable. Our main results provide sharp bounds on tail probabilities, simple formulas for Pareto exponents, and comparative statics. We present two applications: we show that (i) the tails of the wealth distribution in a heterogeneous-agent dynamic general equilibrium model with idiosyncratic investment risk is Paretian, and (ii) a random growth model for the population dynamics of Japanese municipalities is consistent with the observed Pareto exponent but only after allowing for Markovian dynamics.&nbsp;</p>

时间

2019-09-24(Tuesday)16:40-18:00

地点

N302, Econ Building

讲座语言

中文

主办单位

承办单位

类型

系列讲座

联系人信息

主持人

Qingling Fan

专题网站

专题

主讲人简介

<p>Profeesor, The University of Sydney</p>

期数

主讲人: Brendan K. Beare
主讲人简介:

Profeesor, The University of Sydney

主持人: Qingling Fan
简介:
系列讲座
时间: 2019-09-24(Tuesday)16:40-18:00
地点: N302, Econ Building
类型: 系列讲座