Nonparametric sieve estimation of generalized additive model

主讲人

Nianqing Liu

简介

<p>This paper proposes a nonparametric approach to identify and estimate (with sieves) the generalized additive model with arbitrary grouping and discrete variable(s) when the link function is unknown. Our approach allowing arbitrary grouping provides the foundation to design a data-driven inference procedure which finds the best grouping specification among all possible groupings, and allowing discrete variables is mainly motivated by concerns from applied research. We effectively transform the generalized additive model with unknown link function into a problem which is much easier to estimate by sieve approach. Our estimator for link function is shown to converge at a rate of one covariate, and estimators for component functions within the link can attain nonparametric rates of their own covariates. By simulation, we show that such a method has good performance in finite samples.</p>

时间

2019-04-12(Friday)16:40-18:00

地点

N302, Econ Building

讲座语言

English

主办单位

承办单位

类型

系列讲座

联系人信息

主持人

Xingbai Xu

专题网站

专题

主讲人简介

<p>Associate Professor, Shanghai University of Finance and Economics.</p> <p><a href="/Upload/File/2019/4/20190408033622643.pdf">Upload/File/2019/4/20190408033622643.pdf</a></p>

期数

高级计量经济学与统计学系列讲座19年春季第二讲

主讲人: Nianqing Liu
主讲人简介:

Associate Professor, Shanghai University of Finance and Economics.

Upload/File/2019/4/20190408033622643.pdf

主持人: Xingbai Xu
简介:
系列讲座
时间: 2019-04-12(Friday)16:40-18:00
地点: N302, Econ Building
期数: 高级计量经济学与统计学系列讲座19年春季第二讲
类型: 系列讲座