Promote Similarity in Integrative Analysis

主讲人

Shuangge Ma

简介

<p><span style="font-family: Arial;"><span style="text-align: justify;">For multiple high-dimensional problems, it is desired to conduct the integrative analysis of multiple independent datasets. Under a few important scenarios, it can be expected that the estimates of multiple datasets are &ldquo;similar&rdquo; in certain aspects, which may include magnitude, sparsity structure, sign, and others. The existing approaches do not have a mechanism promoting such similarity. In our study, we conduct the integrative analysis of multiple independent datasets. Penalization techniques are developed to explicitly promote similarity. The consistency properties are rigorously established. Numerical studies, including simulation and data analysis, show that the proposed approach has significant advantages over the existing benchmark.</span></span></p> <p class="MsoNormal" style="text-align:justify;text-justify:inter-ideograph"><span lang="EN-US" style="font-family:&quot;Georgia&quot;,&quot;serif&quot;"><o:p></o:p></span></p>

时间

2016-06-27(Monday)16:40-18:00

地点

N303,Econ Building

讲座语言

中文

主办单位

SOE&WISE

承办单位

统计系

类型

独立讲座

联系人信息

主持人

Wei Zhong

专题网站

专题

主讲人简介

<p><span style="font-family: 宋体; font-size: 13px; line-height: 21px;">美国耶鲁大学生物统计系副教授,厦门大学经济学院和王亚南经济研究院讲座教授</span></p>

期数

主讲人: Shuangge Ma
主讲人简介:

美国耶鲁大学生物统计系副教授,厦门大学经济学院和王亚南经济研究院讲座教授

主持人: Wei Zhong
简介:
独立讲座
时间: 2016-06-27(Monday)16:40-18:00
地点: N303,Econ Building
主办单位: SOE&WISE
承办单位: 统计系
类型: 独立讲座